Biochemical characterization of baculovirus-expressed rap1A/Krev-1 and its regulation by GTPase-activating proteins.

نویسندگان

  • L A Quilliam
  • C J Der
  • R Clark
  • E C O'Rourke
  • K Zhang
  • F McCormick
  • G M Bokoch
چکیده

Normal human rap1A and 35A rap1A (which encodes a protein with a Thr-35----Ala mutation) were cloned into a baculovirus transfer vector and expressed in Sf9 insect cells. The resulting proteins were purified, and their nucleotide binding, GTPase activities, and responsiveness to GTPase-activating proteins (GAPs) were characterized and compared with those of Rap1 purified from human neutrophils. Recombinant wild-type Rap1A bound GTP gamma S, GTP, and GDP with affinities similar to those observed for neutrophil Rap1 protein. The rate of exchange of GTP by Rap1 without Mg2+ was much slower than that by Ras. The basal GTPase activities by both recombinant proteins were lower than that observed with the neutrophil Rap1, but the GTPase activity of the neutrophil and wild-type recombinant Rap1 proteins could be stimulated to similar levels by Rap-GAP activity in neutrophil cytosol. In contrast to wild-type Rap1A, the GTPase activity of 35A Rap was unresponsive to Rap-GAP stimulation. Neither recombinant Rap1A nor neutrophil Rap1 protein GTPase activity could be stimulated by recombinant Ras-GAP at a concentration 25-fold higher than that required to hydrolyze 50% of H-Ras-bound GTP under similar conditions. These results suggest that the putative effector domains (amino acids 32 to 40) shared between Rap1 and Ras are functionally similar and interact with their respective GAPs. However, although Rap1 and Ras are identical in this region, secondary structure or additional regions must confer the ability to respond to GAPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of heterozygosity at the human RAP1A/Krev-1 locus is a rare event in colorectal tumors.

Kirsten-ras-revertant-1 (Krev-1/Rap1A) is a recently identified tumor suppressor gene which induces flat revertants when introduced into a variety of ras-transformed cell lines in vitro. Since 47% of colorectal carcinomas have transforming mutations in ras protooncogenes, and since Krev-1 is expressed at high levels in normal colonic mucosa, we hypothesized that inactivation at the Krev-1 locus...

متن کامل

Expression of Recombinant Phosphodiesterase 3A and 3B Using Baculovirus Expression System

Background: Phosphodiesterase 3A (PDE3A) and phosphodiesterase 3B (PDE3B) play a critical role in the regulation of intracellular level of adenosine 3´,5´-cyclic monophosphate (cyclic AMP, cAMP) and guanosine 3´,5´-cyclic monophosphate (cyclic GMP, cGMP). Subsequently PDE3 inhibitors have shown to relax vascular and inhibit platelet aggregation in cardiovascular disease. Objectives: In th...

متن کامل

Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis.

Ras-associated protein 1 (Rap1), a small GTPase, attracted attention because of its involvement in several aspects of cell adhesion, including integrin- and cadherin-mediated adhesion. Yet, the role of Rap1 genes and of Rap1 effectors for angiogenesis has not been investigated. Human umbilical vein endothelial cells (HUVECs) express Rap1a and Rap1b mRNA. To determine the contribution of Rap1 ac...

متن کامل

Down regulation of GTPase regulator associated with the focal adhesion kinase (GRAF) gene expression in patients with acute myeloblastic leukemia

Introduction: GTPase regulator associated with focal adhesion kinase (GRAF) is a recently identified GTPase activating protein that has the tumor suppressor properties. However, the expression level of GRAF in leukemia had received less attention. The main purpose of this research was the evaluating of the expression level of GRAF in patients with acute myeloid leukemia (AML). Materials and met...

متن کامل

Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1).

Cerebral cavernous malformations (CCM) are congenital vascular anomalies of the brain that can cause significant neurological disabilities, including intractable seizures and hemorrhagic stroke. One locus for autosomal dominant CCM ( CCM1 ) maps to chromosome 7q21-q22. Recombination events in linked family members define a critical region of approximately 2 Mb and a shared disease haplotype ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 1990